
Maelstrom TDBOutline v1.5 Help Contents

Click a folder icon to expand or collapse a list of topics for an item. You can also click the underlined text
to see a list of topics. To expand or collapse all folders, click the icon in the title.

To get Help on Help, press F1

Overview provides information you need to know before using TDBOutline.
Using the DBOutline Component.
About Maelstrom TDBOutline provides information on how to order TDBOutline, future enhancements etc.

Overview

The following topics provide basic information you should know before you start using TDBOutline.
What is TDBOutline?
What's new in version 1.5?
What can TDBOutline be used for?
Installation Instructions.

What can TDBOutline be used for?

TDBOutline can be used to display, manipulate and save the hierarchic structure of recursively related
(self-referencing) data. Recursively related tables are used for many purposes, including the following:

• Corporate personnel hierarchy
• Genealogy (Family trees)
• Notes/subnotes (document management)
• GL account structures
• Business channel/segment structures
• Project tasks/subtasks
• Decision trees
• Process flows
• Universal address master files
• PIMs

TDBOutline contains an algorithm that can load hierarchic data into an outline, thus saving the
programmer many hours of coding.

Events   
In addition to the events inherited from TOutline, TDBOutline includes the following:

Key events

OnAutoDragDrop
OnLoadFromDataSet

What is TDBOutline?

Welcome to release 1.5 of the Maelstrom TDBOutline component.

TDBOutline is a native VCL Delphi component designed to allow the loading, navigation, and
manipulation of hierarchically organized data contained in a database.

TDBOutline is a descendant of the TOutline class, inheriting all TOutline's properties, methods and
events.

TDBOutline has additional properties, methods and events that provide the following:

• Automatic loading of recursively related data into the outline, preserving the hierarchic structure. One
call to method LoadFromDataSet is all it takes to populate the outline with all the table data.

• Automatic drag and drop facilities that move a node and all its children to be children of the dropped-on
node. Dragging a node off the outline control will cause the outline to scroll, enabling drag and drop
to a node not visible on the same page as the from-node. A default Move confirmation message can
be enabled, disabled or overridden with your own custom message.

• Automatic record-pointer synchronization -- as you navigate through the outline, TDBOutline will move
the record pointer in the table to the associated record. It will even search for the appropriate index
to enable FindKey synchronization.

• Automatic outline synchronization -- as you navigate through the dataset, you can cause the selected
outline to synchronize with the selected dataset record by calling a single method.

• Automatic update of recursive field upon drag and drop -- when a node is dropped on another node, the
dropped-on node's key field will be written to the dropped node's recursive field.

• Mass update or mass cancel of drag-drop changes with a single method call.

Methods   
In addition to the methods inherited from TOutline, TDBOutline includes the following:

Key methods

AutoDrop
LoadFromDataSet

AddDBRecord
SynchOutline

ChangeDBRecord
UpdateDraggedNode

s

ChangeDBRecord Method
Applies to
TDBOutline

Declaration
procedure ChangeDBRecord(FromDataField: string; ToDataField: string; ToDataFieldDisplay: string);

Description

The ChangeDBRecord method is designed to change the contents of a node and its data to reflect a
change in the underlying dataset record. This method takes care of the pointers required to maintain
DBOutline <-> dataset synchronization through DataAutoSynch and SynchOutline.

The FromDataField parameter corresponds to the DataField field of the record prior to the change.
ToDataField corresponds to the DataField field of the record after the change. ToDataFieldDisplay
corresponds to the DataFieldDisplay field of the record after the change. DataFieldRecursive is not
updated via this method. Use AutoDrop to modify DataFieldRecursive.

Note: Changing the DataField value of a node by any other method will disable synchronization for the
changed node. Modifying the attached data of an outline node via any means will also disable
synchronization for the modified node, and may prevent synchronization for all nodes.

DataAutoSynch Property
Applies to
TDBOutline

Declaration
property DataAutoSynch: Boolean;
Description
The DataAutoSynch property determines whether the record pointer of the dataset loaded into the
DBOutline control will move to the record corresponding to the selected outline node whenever the
selected outline node changes. Also, DataAutoSynch must be True to allow DataAutoUpdate to be True,
and to allow use of method UpdateDraggedNodes. These are the possible values:

Value Meaning

True If True is selected, and a new outline node is
selected, the record pointer of the outline's
underlying dataset will be moved to the record
represented by the outline node.

False If False is selected the record pointer of the
outline's underlying dataset will not be
synchronized with the selected node.

DataAutoDrag Property
Applies to
TDBOutline

Declaration
property DataAutoDrag: Boolean;
Description
The DataAutoDrag property determines whether the DBOutline control, when dragging, will automatically
scroll when a node is dragged outside the control's boundaries. These are the possible values:

Value Meaning

True If True is selected, and drag mode is entered,
then when a node is dragged outside the
boundaries of the control, the control will scroll
in the appropriate direction.

False If False is selected and drag mode is entered,
then scrolling will not be automatic.

About Maelstrom TDBOutline

How to Order TDBOutline
How to get Support
What to look forward to

Maelstrom TDBOutline Help Contents

Click a folder icon to expand or collapse a list of topics for an item. You can also click the underlined text
to see a list of topics. To expand or collapse all folders, click the icon in the title.

To get Help on Help, press F1

Overview provides information you need to know before using TDBOutline.
 • What is TDBOutline?
 • What's new in version 1.5?
 • What can TDBOutline be used for?
 • Installation Instructions

Using the DBOutline Component.
 • Using the DBOutline Component
 • TDBOutline Reference

About Maelstrom TDBOutline provides information on how to order TDBOutline, future enhancements etc.
 • How to Order TDBOutline
 • How to get Support
 • What to look forward to

Maelstrom TDBOutline Help Contents

Click a folder icon to expand or collapse a list of topics for an item. You can also click the underlined text
to see a list of topics. To expand or collapse all folders, click the icon in the title.

To get Help on Help, press F1

Overview provides information you need to know before using TDBOutline.
 • What is TDBOutline?
 • What's new in version 1.5?
 • What can TDBOutline be used for?
 • Installation Instructions

Using the DBOutline Component.
About Maelstrom TDBOutline provides information on how to order TDBOutline, future enhancements etc.

Maelstrom TDBOutline Help Contents

Click a folder icon to expand or collapse a list of topics for an item. You can also click the underlined text
to see a list of topics. To expand or collapse all folders, click the icon in the title.

To get Help on Help, press F1

Overview provides information you need to know before using TDBOutline.

Using the DBOutline Component.
 • Using the DBOutline Component
 • TDBOutline Reference

About Maelstrom TDBOutline provides information on how to order TDBOutline, future enhancements etc.

Maelstrom TDBOutline Help Contents

Click a folder icon to expand or collapse a list of topics for an item. You can also click the underlined text
to see a list of topics. To expand or collapse all folders, click the icon in the title.

To get Help on Help, press F1

Overview provides information you need to know before using TDBOutline.
Using the DBOutline Component.

About Maelstrom TDBOutline provides information on how to order TDBOutline, future enhancements etc.
 • How to Order TDBOutline
 • How to get Support
 • What to look forward to

How to Order TDBOutline

Maelstrom TDBOutline v1.5 Order Form

Maelstrom TDBOutline v1.5 may be ordered through the Shareware Registration
System on CompuServe.

CompuServe: SWREG ID: 8635

Please note that Maelstrom Software does not accept Credit Card Orders. To order direct, please mail a
copy of this order form, along with your check or money order to:

Maelstrom Software
85 Fernhill Blvd
Oshawa, Ontario
Canada L1J 5J1

Please type or print clearly:
Name: ___

Company (if applicable): __

Mailing Address: __

City: __________________________ State: ______________ Postal Code: ___________

Country: __________________________

A copy of TDBOutline must be ordered for each machine on which the program will be used. Your check
or money order should be made payable to "Maelstrom Software."

of Copies: __________ x USD $39.00 = $___________

TOTAL: $___________

If you would like to receive notice of future upgrades and new Maelstrom product releases via e-mail,
please include your Internet or CompuServe e-mail address: __________________________

How did you hear about Maelstrom TDBOutline? __________________________________

You will receive a 3.5" disk through the Mail upon receipt of order.

Please write or send Internet e-mail to 71431.62@compuserve.com to check status or ask questions.
Thank you for ordering the Maelstrom TDBOutline component for Delphi.

If you have a Compuserve account and would prefer to receive TDBOutline through e-mail, Go SWREG #
8635

How to get Support

Support is available to registered users through e-mail:

Maelstrom Software
85 Fernhill Blvd.
Oshawa, Ontario
Canada L1J 5J1

CompuServe: 71431,62
Internet: 71431.62@compuserve.com

Registered users will be notified of bug fixes, enhancements and new products via e-mail or postal mail--
depending on the method by which the user registered.

Bug reports and enhancement requests are always welcome.

What to look forward to

Upcoming Enhancements
The following enhancements are in the planning/development stages:

• Method to load data from one-many-many... relationships. Property editor to allow the user to define
these relationships.

• Glyph & Font definition at outline levels and by dataset status code.

• Semi-virtualization -- allow loading of much larger datasets by loading only the top two levels in
LoadFromDataSet, and loading child nodes as nodes are expanded.

Please let us know of any other improvements you would like to see.

A recursive relation, also referred to as a self-referencing relation, is one in which a record in a table
refers to another record in the same table, as follows:

Supervisor refers to EmpNo.

In this example, EmpNo is said to be the Key Field, and Supervisor the Recursive or Self-Referencing
field.
Within the context of TDBOutline, EmpNo would be the DataField, and Supervisor the
DataFieldRecursive.

Adding new records to a DBOutline
Example
The AddDBRecord method should be used to add new nodes to the DBOutline. AddDBRecord ensures
that the proper information is stored in the node's attached data. If a node is added using the inherited
Add or AddChild methods, DataAutoSynch and SynchOutline will not function for that node.

DataField Property
Applies to
TDBOutline

Declaration
property DataField: String;
Description

The DataField property identifies the field from which TDBOutline controls the loading and display of its
hierarchical data.
DataField represents the key field of the recursive relation defined for the dataset.
During drag-and-drop operations, the DataField of the dropped-on node will be used to update the field of
the dragged node's record identified by the DataFieldRecursive property.
The dataset the field is located in is specified by DataSource.

DataFieldDisplay Property
Applies to
TDBOutline

Declaration
property DataFieldDisplay: String;
Description

The DataFieldDisplay property identifies the field which TDBOutline will display after loading its
hierarchical data.
DataFieldDisplay can be a field in TDBOutline's underlying dataset, or a calculated field defined in the
TFields editor.
After TDBOutline's LoadFromDataSet method is called, DataFieldDisplay will be displayed as the text
value of each outline node.
The dataset the field is located in is specified by DataSource.

LoadFromDataSet Method
Applies to
TDBOutline

Declaration
procedure LoadFromDataSet;

Description

The LoadFromDataSet method executes an algorithm that loads recursively-related data from a dataset
into the DBOutline control.
The dataset that the data is loaded from is specified by the DataSource property.
The hierarchy is defined to LoadFromDataSet via the DataField and DataFieldRecursive properties of
TDBOutline. The data that will be displayed is specified by DataFieldDisplay. LoadFromDataSet will
first clear the DBOutline of all nodes, then add the dataset records.

DataFieldRecursive Property
Applies to
TDBOutline

Declaration
property DataFieldRecursive: String;
Description

The DataFieldRecursive property identifies the field which defines the recursive relation from which
TDBOutline controls the loading and display of its hierarchical data.
DataFieldRecursive represents the referencing field of the recursive relation defined for the dataset.
DataFieldRecursive references the field specified in the DataField property of TDBOutine.
During drag-and-drop operations, the field in the from-record specified by DataFieldRecursive will be
updated with the value of the field in the to-record specified by the DataField property.
The dataset the field is located in is specified by DataSource.

DataSource Property
Applies to
TDBOutline

Declaration
property DataSource: TDataSource;

Description

The DataSource property determines where the component obtains the data to display.
Specify the data source component that identifies the dataset the data is found in.

MasterParent Property
Applies to
TDBOutline

Declaration
property MasterParent: Boolean;
Description
The MasterParent property determines whether method LoadFromDataSet will load top-level records as
children of a master node, or as top-level nodes. These are the possible values:

Value Meaning

True If True is selected, LoadFromDataSet will load
all top-level parent records (i.e., the field
represented by DataFieldRecursive is blank)
as children of a master parent node. The text
of the master node is specified by property
MasterParentText.

False If False is selected, LoadFromDataSet will
load all top-level parent records as top-level
outline nodes.

MasterParentText Property
Applies to
TDBOutline

Declaration
property MasterParentText: String;
Description
The MasterParentText property specifies the text of the master parent node that will be used if the
MasterParent property is set to True.

AutoDrop Method
Applies to
TDBOutline

Declaration
procedure AutoDrop(X, Y: integer);

Description

The AutoDrop method moves the selected DBOutline node to be a child of the node at screen pixel
coordinates X and Y. All children of the selected node will be moved with it.
If the DataAutoSynch and DataAutoUpdate properties are set to True, AutoDrop will also update the field
specified by DataFieldRecursive of the record represented by the selected node, with the content of the
field specified by DataField of the record represented by the node at X,Y. If DataAutoSynch is True and
DataAutoUpdate is False, the record will not be updated automatically, but may be updated by calling
method UpdateDraggedNodes.
Typically, AutoDrop should be called in the OnDragDrop event of the TDBOutline control to enable drag-
and-drop manipulation of the hierarchy of the dataset that was loaded into TDBOutline using the
LoadFromDataSet method.
See Manipulating the hierarchy via drag-and-drop for details on the use of AutoDrop.

OnLoadFromDataSet Event
Applies to
TDBOutline

Declaration
property OnLoadFromDataSet: TLoadFromDataSetEvent;

Description

The OnLoadFromDataSet event occurs whenever the LoadFromDataSet method evaluates a new record
for load to TDBOutline. Use the OnLoadFromDataSet event handler to evaluate whether a record should
be loaded, and set the value of Accept appropriately. If Accept is set to false, LoadFromDataSet will skip
the record. If true, it will add the record as a node.
The Sender parameter of the OnLoadFromDataSet event is the object calling the event handler.
The Accept parameter is a boolean value indicating whether the record should be loaded.
The ToNode parameter is the DataField value of the record being evaluated.

Installation Instructions

To install the TDBOutline component, copy all distributed files into a directory of your choice.
You may wish to install the following files to a component library (example: \delphi\lib).

DBOUTLN.DCU
DBOUTLN.RES

From Delphi's menu, invoke OPTIONS | INSTALL COMPONENTS and install component
DBOUTLN.DCU.
The DBOutline component will appear on the Data Controls pallet.

To run the demonstration program, load and compile DEMO.DPR in Delphi.

To integrate TDBOutline's help file with Delphi, install the KWF file:
1. Make a backup copy if Delphi's master index file, \delphi\bin\delphi.hdx.
2. Copy file TDBOUTLI.HLP to \delphi\bin.
3. Copy file TDBOUTLI.KWF to \delphi\help
4. Run the program HELPINST (installed with Delphi).
5. Open keyword index file \delphi\bin\delphi.hdx.
6. Add keyword file \delphi\help\tdboutli.kwf.
7. Save.

OnAutoDragDrop Event
Applies to
TDBOutline

Declaration
property OnAutoDragDrop: TAutoDragDropEvent;

Description

The OnAutoDragDrop event occurs whenever the AutoDrop method is called, prior to the execution of the
drop. Use the OnAutoDragDrop event handler to specify how TDBOutline should handle the drop of one
node onto another.
If no event handler exists, TDBOutline will send a default message asking the user if the drop should be
performed.
If an event handler exists, TDBOutline will only proceed with the drop if the value of Accept is true.
Hence, simply setting Accept to true will override the default message, and perform the drop without
confirmation from the user.

Tip: replace the default confirmation message with one of your own in the OnAutoDragDrop event
handler. If the user confirms, set Accept to true; otherwise set Accept to false.

The Sender parameter of the OnAutoDragDrop event is the object calling the event handler.
The Accept parameter is a boolean value indicating whether the record should be dropped.
The ToNode parameter is the text value of the node being dropped on.
The FromNode parameter is the text value of the node being dropped.

 TDBOutline Component
Properties                                Methods                                Events                                Tasks

Unit
DBOutln

Description

The TDBOutline component inherits all properties, methods and events of TOutline. Perform a search on
TOutline for more information.

The TDBOutline component is used to display and manipulate multilevel outlines of dataset data. Use a
DBOutline to visually organize information in a hierarchical tree. Each item in a DBOutline is contained in
a TOutlineNode object.

An item in a DBOutline can be accessed by the Items property. The items are indexed from 1 to the
number of items. For example, Items[1] refers to the first (topmost) item. Since Items is the default array
property of TDBOutline, an item can also be accessed immediately following the outline name. For
example, DBOutline1.Items[1] and DBOutline1[1] refer to the same outline item.

Use the LoadFromDataSet method to load dataset records into the DBOutline.

Use the AddDBRecord method to add a new dataset record to a DBOutline. Use ChangeDBRecord to
change the dataset information contained in a DBOutline node. Use Delete to remove items.

The currently selected item is specified by the SelectedItem property. When the user selects a new item
of the outline (by clicking with the mouse or pressing an Arrow key), the newly selected item is specified
by SelectedItem.

Properties   
In addition to the properties inherited from TOutline, TDBOutline includes the following:

Run-time only Key properties

DataAutoDrag IgnoreCyclicalDrops

DataAutoSynch MasterParent

DataAutoUpdate MasterParentText

DataField SynchSuccess

DataFieldDisplay

DataFieldRecursive

DataSource

DataAutoUpdate
Applies to
TDBOutline

Declaration
property DataAutoUpdate: Boolean;
Description
The DataAutoUpdate property may only be True if the DataAutoSynch property is also True.
DataAutoUpdate determines whether the underlying dataset will be automatically updated when method
AutoDrop is called. AutoDrop is typically called after a drag-drop move of a node to another node.
Hence DataAutoUpdate determines whether the dragged node's underlying dataset record will have its
DataFieldRecursive field automatically updated to contain the value of the dropped-on node's underlying
dataset record's DataField field.

If DataAutoUpdate is false, method UpdateDraggedNodes can be called to perform the update of all
dragged nodes that have not yet been updated (provided DataAutoSynch is True).

Value Meaning

True If True is selected, and method AutoDrop is
called in the OnDrop event of the DBOutline,
the dragged node's underlying dataset
record's DataFieldRecursive field will be
updated to contain the value of the dropped-
on node's underlying dataset record's
DataField field.

False If False is selected, the above update will not
automatically occur when AutoDrop is called.
Instead, method UpdateDraggedNodes will
have to be called to perform the update.

IgnoreCyclicalDrops Property
Applies to
TDBOutline

Declaration
property IgnoreCyclicalDrops: Boolean;
Description
The IgnoreCyclicalDrops property indicates whether a default error message will be displayed if a cyclical
drag-drop operation is attempted. A cyclical drag-drop is one in which a node is dropped onto itself, or
one of its child nodes. A cyclical drop will not be performed regardless of the value of
IgnoreCyclicalDrops -- the property only controls whether or not the error message is displayed.

Value Meaning

True If True is selected, and a cyclical drag-drop
occurs, no error message will be displayed.

False If False is selected, and a cyclical drag-drop
occurs, a default error message will display.

SynchSuccess
Applies to
TDBOutline

Declaration
property SynchSuccess: Boolean;
Description
The SynchSuccess property is a Read-only property that indicates if the last attempt by TDBOutline to
synchronize the dataset pointer to the selected DBOutline node was successful. If SynchSuccess is
True, the DBOutline component was able to synchronize the dataset, otherwise it was unable to
synchronize.

SynchSuccess can be evaluated at runtime to determine if the record corresponding to the selected
outline was found. SynchSuccess can only be True if DataAutoSynch is True. SynchSuccess will
always be False when a MasterParent node is selected, because there is no corresponding dataset
record.

Using the DBOutline Component

TDBOutline Reference
Purpose
Use the DBOutline component when you want to load dataset data into an outline to display and
manipulate the hierarchical relationship between the data records. Each record in the dataset is
represented by a node in the outline.

The DataSource property defines which table or query will be loaded into the outline. The
DataFieldDisplay property specifies the dataset field that will be displayed as the text of the outline node.
DataFieldDisplay can be a calculated field defined with the TField editor.
The DataField and DataFieldRecursive properies define the recursive relation that will be loaded into the
outline--the LoadFromDataSet method uses these properies to drive the algorithm that iterates through
the dataset, loading each record into the outline. DataField and DataFieldDisplay must be of the same
type, and DataField must be a unique key of the dataset. In addition, if the datasource's dataset is a
TTable, there must be an index, primary or secondary, that has DataField as the first key in order to take
advantage of DataAutoSynch. If the datasource's dataset is a TQuery, TDBOutline will move through the
dataset to synchronize without an index.

Tasks
Loading a TDBOutline component
Manipulating the hierarchy via drag-and-drop
Synchronizing the DBOutline to reflect changes to the underlying dataset
Adding new records to a DBOutline
Editing existing records in a DBOutline
Deleting records from a DBOutline

Notes
• If DataAutoSynch is True and the dataset is indexed on a primary key that is not DataField, TDBOutline

will change to an index based on DataField to perform dataset synchronization, then switch back to
the original index. If the dataset originally had a Range set, the range will be lost after dataset
synchronization. Thus, if a filtered dataset is required a TQuery must be used.

• If DataSource is pointing to a TQuery, the TQuery's RequestLive property must be true and the SQL
statement must meet Delphi's syntax requirements for a live result set in order to take advantage of
methods that update the dataset.

• If DataSource is pointing to a TTable, the TTable's ReadOnly property must be false to take advantage
of methods that update the dataset.

Manipulating the hierarchy via drag-and-drop
Example

Changes can be made to the DBOutline hierarchy via drag-and-drop.
If the DataAutoDrag property is set to True, TDBOutline will provide automatic drag-and-drop scrolling of
the outline. Calling the AutoDrop method in the OnDragDrop event of the DBOutline will automatically
move the dragged node and make it a child of the dropped-on node.

Hint: if your outline contains more than one root (top-level) node, set property MasterParent to True and
assign a string to MasterParentText. This will create a single root with text MasterParentText and make
your top-level nodes children of it. You will then be able to drop a node on the MasterParent node to
make it top-level. If a node is dropped on the MasterParent node, the DataFieldRecursive value will be
replaced with a null value. This indicates that the node has become a top-level parent.

If the DataAutoSynch and DataAutoUpdate properties are set to True, a drag-drop operation will
automatically update the underlying dataset with the change (i.e., post the DataField value of the
dropped-on node to the DataFieldRecursive field of the dragged node).

If the DataAutoSynch property is set to True, and the DataAutoUpdate property is set to False, then drag-
drop changes are not automatically posted to the underlying dataset. In this case the method
UpdateDraggedNodes can be called to post all drag-drop changes to the dataset.

If DataAutoSynch is false, drag-drop changes cannot be posted to the dataset.

If the MasterParent property is set to True, and a node is dropped on the MasterParent node, the
DataFieldRecursive value will be replaced with a null value. This indicates that the node has become a
top-level parent.

Example 1
The following code illustrates the implementation of drag-and-drop manipulation of TDBOutline nodes.

In the first example, DataAutoDrag = True, DataAutoSynch = True, DataAutoUpdate = True

 procedure TMainForm.DBOutline1DragOver(Sender, Source: TObject;
 X, Y: Integer; State: TDragState; var Accept: Boolean);
 begin
 if Source = DBOutline1 then Accept := True;
 end;
 procedure TMainForm.DBOutline1DragDrop(Sender, Source: TObject; X,
 Y: Integer);
 begin
 if Source = DBOutline1 then
 DBOutline1.AutoDrop(x, y);
 end;

To override TDBOutline's default confirmation message (presented during AutoDrop processing), add
code similar to the following in the OnAutoDrop event handler:

 procedure TMainForm.DBOutline1AutoDragDrop(Sender: TObject;
 var Accept: Boolean; var FromNode, ToNode: OpenString);
 begin
 if MessageDlg(' Have employee ['+ FromNode +'] report to ['+ ToNode +
']?', mtConfirmation, mbOkCancel,0) = mrOk
 then Accept := True
 else Accept := False
 end;
To prevent any confirmation message, simply set Accept := True in the OnAutoDragDrop event hander.

Because DataAutoSynch = True and DataAutoUpdate = True, method AutoDrop will immediately post the
change to the dataset record.

Example 2
In the second example, DataAutoDrag := True, DataAutoSynch := True, DataAutoUpdate = False

Given the same code as above, because DataAutoSynch = True and DataAutoUpdate = False, method
AutoDrop will not post the change to the dataset record.
To post drag-drop changes given DataAutoUpdate = False, method UpdateDraggedNodes must be
called. UpdateDraggedNodes is used to post all drag-drop changes made to the DBOutline that are
outstanding (i.e., not posted to the dataset). The method can be used in conjunction with property
DataAutoUpdate = False to allow the user to manipulate the hierarchy without saving, then save or
abandon.

 procedure TMainForm.btnSaveDragDropChangesClick(Sender: TObject);
 begin
 DBOutline1.UpdateDraggedNodes(Self);
 end;

Example 3
In the third example, DataAutoDrag := True, DataAutoSynch := False, DataAutoUpdate = False

In this example, the code for example 1 applies. Because DataAutoSynch =False, however, neither
AutoDrop nor UpdateDraggedNodes will be able to update the dataset to reflect drag-drop changes to the
nodes.

UpdateDraggedNodes Method
Applies to
TDBOutline

Declaration
procedure UpdateDraggedNodes(Sender: TObject);

Description

The UpdateDraggedNodes method is used to post all outstanding drag-drop changes to the dataset.
Drag-drop changes are outstanding if they have not been saved to the dataset. UpdateDraggedNodes is
only functional if DataAutoSynch is True. If DataAutoUpdate is also True, drag-drop changes will always
be posted to the dataset immediately, and UpdateDraggedNodes will have no effect (as there will be no
outstanding changes to update). See Manipulating the hierarchy via drag-and-drop for more details.

Loading a TDBOutline component
Example
To use a TDBOutline component,

1. Place the TDBOutline component on the form.
2. Set the DataSource property to the name of a TTable or TQuery component already on the form.
3. Set the DataField property to the key field of the DataSource.
4. Set the DataFieldRecursive property to the field that references DataField for the recursive relation.
5. Set the DataFieldDisplay property to the field you wish displayed in the outline node.

DataFieldDisplay can be a calculated field.
6. In the FormCreate event handler of the form, call the LoadFromDataSet method.

TDBOutline considers a node to be a top-level parent, or root, if its DataFieldRecursive field is empty,
zero, or blank.

Example
The following code illustrates the use of method SynchOutline to synchronize the selected DBOutine
node to the selected dataset record.

In this example the OnDataChange event of the DataSource is used. This ensures the SynchOutline will
be called whenever the record pointer moves.

 procedure TMainForm.DataSource1(Sender: TObject; Field: TField);
 begin
 if StartSynching then
 DBOutline1.SynchOutline(Self);
 end;

StartSynching is a boolean variable used to control whether SynchOutline is triggered. In some
instances (for example, appending a new record), you would not want SynchOutline to execute, because
the DBOutline node corresponding to the record being appended does not yet exist. See Adding new
records to a DBOutline for more information on the use of a boolean variable to enable/disable
SynchOutline.

Example 1
The following code illustrates the loading of a TDBOutline from a dataset

procedure TMainForm.FormCreate(Sender: TObject);
begin
 Table1.Open;
 DBOutline1.LoadFromDataSet;

 {Expand the MasterParent node, and select the first top-level node }
 if DBOutline1.ItemCount > 1 then
 begin
 DBOutline1.Items[1].Expand;
 DBOutline1.SelectedItem := 2;
 end;
end;

Synchronizing the DBOutline to reflect changes to the underlying dataset
Example
If property DataAutoSynch is set to True and its conditions are met, the record pointer of the dataset will
move to the record that corresponds to the currently selected DBOutline node. Each time a new
DBOutline node is selected, the record pointer will automatically move.

It remains for the programmer to call method SynchOutline at appropriate points in order to synchronize
the currently selected DBOutline node to the currently selected dataset record.

SynchOutline Method
Applies to
TDBOutline

Declaration
procedure SynchOutline(Sender: TObject);

Description

The SynchOutline method changes the selected DBOutline node to match the currently selected dataset
record.
See Synchronizing the DBOutline for details on usage.

AddDBRecord
Applies to
TDBOutline

Declaration
procedure AddDBRecord(NewDataField: string; NewDataFieldDisplay: string; NewDataFieldRecursive:
string);

Description

The AddDBRecord method is designed to add a new dataset record to the DBOutline. This method
takes care of the pointers required to maintain DBOutline <-> dataset synchronization through
DataAutoSynch and SynchOutline. The new node is added as a child node of the currently selected
DBOutline node.

The NewDataField parameter corresponds to the DataField field of the record to be added.
NewDataFieldDisplay corresponds to the DataFieldDisplay field of the record to be added.
NewDataFieldRecursive corresponds to the DataFieldRecursive field of the record to be added.

Note: Adding nodes to a DBOutline by any other method (i.e. by the inherited Add or AddChild methods)
will disable synchronization for the added node. Modifying the attached data of an outline node via any
means will also disable synchronization for the modified node, and may prevent synchronization for all
nodes.

Example
The following code illustrates how to add a new dataset record to TDBOutline.

 procedure TForm1.SpeedButton1Click(Sender: TObject);
 begin
 StartSynching := False;
 Table1.Append;
 Table1.FieldByName('EmpNo').AsString := Edit1.Text;
 Table1.FieldByName('LastName').AsString := Edit2.Text;
 Table1.FieldByName('Supervisor').AsString := Edit3.Text;
 Table1.Post;
 DBOutline1.AddDBRecord(Edit1.Text, Edit2.Text, Edit3.Text);
 StartSynching := True;
 end;
The boolean variable StartSynching is used as per Synchronizing the DBOutline
to reflect changes to the underlying dataset.

Editing existing records in a DBOutline
Example
The ChangeDBRecord method should be used to modify existing nodes in a DBOutline.
ChangeDBRecord ensures that the proper information is modified in the node's attached data. If a
node's DataField value is modified by any other method, DataAutoSynch and SynchOutline will not
function for that node.

Deleting records from a DBOutline
Example
To delete a node from a DBOutline control, use the Delete method inherited from TOutline. Particular
attention must be paid to the deletion of records / nodes, as DataAutoSynch and SynchOutline can move
the record pointer / selected node during the operation. See the example for details.

Example
The following code illustrates how to change a dataset record in a DBOutline control.

 procedure TForm1.SpeedButton1Click(Sender: TObject);
 begin
 StartSynching := False;
 Table1.Edit;
 Table1.FieldByName('EmpNo').AsString := Edit1.Text;
 Table1.FieldByName('LastName').AsString := Edit2.Text;
 Table1.Post;

DBOutline1.ChangeDBRecord(IntToStr(DBOutline1.Items[DBOutline1.SelectedItem].I
ndex)
 , Edit1.Text, Edit2.Text);
 StartSynching := True;
 end;
For an explanation of the use of boolean variable StartSynching, see
Synchronizing the DBOutline to reflect changes to the underlying dataset.

Example
The following code illustrates how to delete a dataset record from TDBOutline.

 procedure TForm1.SpeedButton1Click(Sender: TObject);
 begin
 StartSynching := False;
 Table1.Delete;
 DBOutline1.Delete(DBOutline1.SelectedItem);
 StartSynching := True;
 end;
Note that the record in the table was deleted first.    If DataAutoSynch is set to True, and the
DBOutline node is deleted first, the new selected node will cause the dataset to
resynchronize, and the incorrect record would be deleted.

Also, note the use of a boolean variable, StartSynching.    In this example, it is assumed that
the OnDataChange event of the DataSource calls method SynchOutline if StartSynching is
True.    This gives the programmer the ability to prevent the table from resynchronizing the
DBOutline when the dataset record is deleted, thus preventing the incorrect node from being
deleted.    For more information on the use of boolean variable StartSynching, see
Synchronizing the DBOutline to reflect changes to the underlying dataset.

What's new in version 1.5?

• Version 1.5 has been modified to prevent the display of DataField within the node text. Resulting from
this modification, the Data element of each node is now occupied with information TDBOutline needs to
navigate and synchronize the DBOutline.
IMPORTANT: the attached data (pointer) of each DBOutline node is now used by TDBOutline, and
should not be modified by the programmer. If modification of the attached data is required, version 1.0
should be used. Version 2.0 is planned to include a new data element that the programmer can use.

• Several new methods have been added to facilitate the addition/editing of outline nodes after the initial
call to LoadFromDataSet. These methods are AddDBRecord and ChangeDBRecord.

• A new method has been added to allow the developer to synchronize the DBOutline's selected node to
changes in the underlying dataset's selected record: SynchOutline.

• A new property has been added, DataAutoUpdate, that specifies if drag-drop changes should be
immediately posted to the dataset or not. In conjunction with this new property, a method has been
added, UpdateDraggedNodes, that will post all un-posted drag-drop changes to the dataset. This allows
the manipulation of the DBOutline's structure without changing the dataset. The modifications to the
hierarchy can be saved with a call to UpdateDraggedNodes, or abandoned with a call to
LoadFromDataSet.

• In keeping with the above change, AutoDrop has been modified to post drag-drop changes to the
dataset only if DataAutoUpdate is True.

• Improved support for TQueries has been added. DataAutoSynch will now work with a TQuery. All
other functionality also works with TQuery, provided the TQuery is capable of being updated.

• A new property has been added to prevent the display of the default error message if a cyclical drag-
drop is attempted: IgnoreCyclicalDrops.

• Improved index support has been provided. The DataAutoSynch mechanism will now maintain the
initial index of the dataset, switching to an index with primary key DataField as needed, then switching
back.

